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ABSTRACT 
A numerical method is developed which can simulate the interaction between a finite compliant panel and 
an unsteady potential flow. A boundary-element technique yields the flow solution whilst finite-differences 
are used to solve the wall dynamics; these are then coupled to generate a fully interactive wall/flow system. 
Thus, the evolution of any wall disturbance can be followed. Parallel computing is appropriately employed 
and a stability investigation of a realistic compliant panel is carried out. Three-dimensional flexural waves 
are found below a critical flow speed whilst beyond this threshold, essentially two-dimensional unstable 
divergence waves are found. The form of divergence shows good agreement with that seen in experimental 
studies. The versatility of this new method will permit the investigation of a wide variety of single- and 
multi-panel configurations subject to different forms of excitation. 
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INTRODUCTION 

The interaction between a boundary-layer flow and a passive compliant wall can produce a 
delay in laminar-to-turbulent transition. This has been shown theoretically by Carpenter and 
Garrad1, Yeo2,3 and Carpenter and Morris4. The successful experimental work of Daniel 
et al.5, Gaster6 and Willis7 demonstrated that wall compliance reduced the growth rates of the 
Tollmien-Schlichting (T-S) waves thereby extending the linear part of the transition length. 
This effect can be exploited to yield valuable reductions to the skin-friction drag of marine 
vehicles. Recent work on compliant walls optimised for transition delay8,9 suggest that a 60% 
reduction to the skin-friction drag of a small submersible is achievable. The key to designing 
useful compliant walls lies in giving proper consideration to all of the instabilities which might 
exist within the wall/flow system. The introduction of compliance serves to attenuate the T-S 
waves but renders the system susceptible to hydroelastic instabilities. Lucey et al.10 have shown 
one of these wall-based instabilities could have accounted for the dramatic breakdown of the 
flow over the softer compliant walls recorded in the aforementioned experimental work. 

The two most important hydroelastic instabilities, which can be considered to be wall-based, 
are travelling-wave flutter (TWF) and divergence. The mechanisms underlying these instabilities 
(and that of the T-S waves) are discussed in Carpenter11. For convenience a brief description 
is included here. TWF is a conventional wall wave which may grow as it travels downstream 
due to an irreversible energy transfer from the fluid flow into the wall. It is the presence of a 
boundary layer which introduces this type of energy transfer by effectively applying a phase shift 
to the pressure forces as they are transmitted to the wall from the outer potential flow. Like the 
T-S waves, this is a convective instability—it grows as it travels downstream from some initial 
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disturbance. Divergence instability is essentially a result of the interaction between conservative 
wall and fluid forces, the latter obtaining from disturbances to the flow outside of the boundary 
layer. In simple terms, then, when the hydrodynamic stiffness due to a wall disturbance exceeds 
the structural restorative forces in the wall, divergence ensues. Experimental evidence of 
divergence12-14 shows it to be a slow downstream-travelling wave. However, a two-dimensional 
analysis of Carpenter and Garrad15 has shown that this wave has zero group velocity. This 
implies that it is an absolute instability which would evidence growth at all locations of the 
compliant wall. Confirmation of this character, for the two-dimensional study, has been provided 
by the numerical simulations of Lucey and Carpenter16 which show the spread of the instability 
in both upstream and downstream directions from a location of initial excitation. Given this 
absolute character, it is essential that compliant walls are designed to be divergence free. The 
present paper sets out to further our understanding of divergence instability. In particular, we 
use suitable numerical methods to study the divergence of a finite compliant panel for which 
the three-dimensionality of disturbances and panel-edge effects are expected to be important. 

A method is therefore developed which can simulate the response of a finite compliant panel 
to an unsteady incompressible potential flow. A boundary-element method provides the flow 
solution which is then coupled to a finite-difference representation of wall mechanics. The 
wall/flow system is solved globally; this approach is essential given the absolute nature of 
divergence instability. A semi-implicit numerical scheme is employed for the time-stepping so 
that numerical phase shifts are minimized—the presence of this type of phase shift could be 
manifest as an artificial transfer of energy between the wall and flow. In effect, the philosophy 
follows that employed in the two-dimensional simulations of Lucey and Carpenter16. However, 
the three-dimensional work presented here is computationally far more demanding. To meet 
these needs, parallel computing is used with the solution algorithms tailored to exploit the 
architecture of the distributed-array processor. The resulting computer code offers a versatile 
means to follow the development of the wall/flow system and to determine the onset flow speeds 
of divergence instability for a variety of compliant-panel configurations. In contrast to a classical 
approach to the hydroelastic analysis of flexible panels17-20, the disturbance form is completely 
arbitrary. Moreover, the present method allows different means of initial excitation of the wall 
to be investigated. 

The assumption of purely potential flow is suitable for the prediction of divergence instability 
but precludes the existence of TWF. Nevertheless, the numerical simulations are able to model 
the flexural waves that support TWF and which are modified both by the hydrodynamic forces 
that originate beyond the boundary layer, and by the presence of panel edges. The present model 
captures the primary response of the compliant wall; future work can build on this model most 
particularly through the incorporation of a boundary layer. In all of the following a plate-spring 
model of a single compliant panel is used. It should be remarked that the methodology is 
applicable to other types of compliant wall provided that a suitable wall solution is available. 
Additionally the present work may easily be extended to model the arrays of compliant panels 
that will undoubtedly be used in practical applications. 

MATHEMATICAL MODEL 
The type of wall used in the present model was developed in Reference 1 to model the coatings 
used in Kramer's21 pioneering experimental work. It consists of an isotropic flexible plate 
supported by a uniformly-distributed spring foundation and may include conventional damping. 
In-plane forces are neglected. This type of compliant-wall structure is illustrated in Figure 1 
along with the co-ordinate system used in the following work and the direction of flow. The 
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equation of motion, for vertical deflections of the wall, w(x,y,t), is: 

where ρm and h are the density and thickness of the flexible plate, d is a damping coefficient and 
KE is an equivalent spring stiffness which combines the effects of the foundation springs and 
body forces. The hydrodynamic pressure due to the wall disturbance is given by δp. Dot notation 
indicates differentiation with respect to time. The plate flexural rigidity, B, and the biharmonic 
operator are, respectively, defined by: 

where E and v are the elastic modulus and Poisson ratio of the plate. Other types of compliant 
wall can be modelled by choosing an appropriate differential operator (in (1)) for the wall 
restorative stiffness; these forms are discussed in Dowell22. 

To evaluate the driving hydrodynamic pressure perturbations seen on the right-hand side of 
(1), it is necessary to solve the Laplace equation subject to the no-flux condition at the wall/fluid 
interface. Previous methods of solution18-20 have represented the surface deformation as a 
collection of orthogonal modes in order to render the problem tractable. For a finite panel with 
hinged edges, Lucey and Carpenter23 used the simple form: 

where a and b are the panel dimensions, ω is the complex angular frequency and Akl is the 
(complex) intensity of the mode with numbers {k, l}. The flow solution can be found, for example, 
using thin-aerofoil theory and the system problem, represented by (1), solved using a Galerkin 
method to yield global predictions of the wall behaviour. It should be noted that in the practical 
implementation of this type of approach, the Fourier expansion of the wall disturbance is severely 
truncated or restricted to a, usually small, finite number of selected modes. 

NUMERICAL MODEL 
To proceed with the numerical modelling of the system, the flexible surface is discretized into 
an array of panel-elements as shown in Figure 1; the mesh-line numbering and panel notation 
used below are included in this Figure. Mass-points are located at the intersection of mesh lines 
for the finite-difference scheme representation of the wall mechanics. 
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Wall mechanics 
A pair of suitable basis equations, together with the finite-difference form of (1), for an implicit 

solution are written as: 

Structural coupling of mass points occurs through the biharmonic operator which, using centred 
differences, is given by: 

where δx and δy are the mesh-line spacings. Here, for convenience, we have assumed a uniform 
mesh. The hinged-edges of the compliant panel are modelled by enforcing the conditions of zero 
deflection and zero turning moment along the edges. In discretized form, then: 

where Κ = δx2/δy2. The above forms of the biharmonic operator and the edge conditions 
necessitate the introduction of a set of 'dummy' points located around the compliant panel and 
defined by the mesh lines, i = — 1, j = — 1, i = M + 1 and j = N + 1. 

For the compliant-panel motion in the absence of a fluid, then δpij = 0 and (3) can be solved 
using Gauss-Seidel sweeps to track the free-wave behaviour of the panel after an initial 
perturbation from its equilibrium position in the plane z = 0. The iteration procedure for each 
time step is complete when convergence has been reached for all of 

Fluid mechanics 
To model the interactive wall/flow system, a suitable form for the perturbation pressure, δpij, 

needs to be found. The M x N array of panel-elements, seen in Figure 1, is used to construct a 
boundary-element solution. Following the methods of Hess and Smith24, each panel-element is 
assigned a source strength, σij , the value of which is determined by applying the condition of 
zero flux at the surface. This boundary condition can be written as: 
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where the source-strength influence coefficients are given by the surface integral: 

In the above equations, rij is the vector describing the control point (in this application, the 
centre) of panel-element ij, nij is the unit vector normal to panel-element ij and upij is its velocity 
in this direction. The vector rmn varies through all surface locations of the panel-element mn for 
the integration. For a given surface deformation and surface-velocity distribution, the linear 
system of equations (defined by (4)) can be solved to yield the source-sink strengths. Thereafter, 
the values of perturbation-velocity potential at each panel-element control point can be evaluated. 

The above method is able to cope with non-linear wall disturbances; but, the full non-linear 
version has only been computer coded for the case of static deflections. In fact, we are interested 
in the dynamic behaviour of the wall/flow system; the changing geometry of the wall with time 
means that at each iteration of each time-step, the influence coefficients might need to be 
re-calculated. This computationally expensive procedure has led us to develop a faster method 
of flow solution but which is restricted to small (i.e. linear) disturbances of the compliant wall. 
This approximate method stipulates that the influence coefficients remain in the undisturbed 
plane, z = 0, and that the source-sink strengths of a particular panel-element are solely dependent 
upon its deflection. The second condition decouples (4), leading to the simple determination of 
source strengths: 

where αij is the panel-element angle of slope relative to the x-axis and uvij is the vertical velocity 
of the panel control point. The accuracy of this approximate method has been improved by 
incorporating a linear variation to the steady part of the source strength seen in (5). Thus, 
solutions for the velocity-perturbation potential and the x-direction tangential velocity at the 
control points take the forms: 

where λmn is the coefficient of the linear-variation of source strength on panel-element mn and 
IΦijnm, IU0ijmn and IU1ijnm are sets of geometry-dependent influence coefficients. It is emphasized that 
all of these influence coefficients are evaluated for the compliant panel in the undisturbed position 
and remain unchanged throughout the motion of the wall/flow interface. Thus, they need only 
be calculated once—before the finite-difference solution for the system is initiated. This linear 
variant of the boundary-element method has been tested against the non-linear method described 
above for a static deflection and been shown to give acceptable agreement provided that 
disturbance amplitudes remain within 1% of the wavelength of a sinusoidal-type disturbance. 

The pressure perturbations at the panel-element control points can now be found using a 
discretized form of the linearized unsteady Bernoulli equation: 

where ρ is the fluid density. It can be seen that upon substituting for uij and Φij using (6) (and 
noting the functional dependence of σij in (5)), the pressure perturbation takes the form: 
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This decomposition of the unsteady pressure illustrates the presence of hydrodynamic inertia 
-dependent terms), damping -dependent terms) and stiffness (w-dependent terms) in the 

fluid forcing. The absence of suffices in the arguments above indicates that the variable value 
at every mass-point is required for the function evaluation. 

Solution of the coupled wall/flow system 
The wall and flow solutions are coupled by introducing the pressure perturbations, (8), into 

the finite-difference equations which describe the wall motion. The above perturbation pressures 
have been evaluated at the panel-element control points; simple averaging of the values at the 
four panel-elements surrounding a mass-point yields the appropriate value at the mass point. 
Having carried out this averaging and written the form of δpU2(ẅ) explicitly (using (5) and (6a)), 
the acceleration equation, (3c), becomes: 

where: 

This represents a linear system of equations, order (M — 1) × (N — 1), for the unknowns, ẅt+δtij 
which can be written in the form: 

where the matrix Gijmn (i, m: 1 → (N — 1) and j , n: 1 →(N — 1)) has elements comprising the 
influence coefficients IΦijmn which are solely geometry dependent and, in the linear boundary-
element method, remain unchanged throughout the evolution of wall disturbances. The matrix 
can thus be assembled, inverted and stored before the solution procedure is initiated. Once the 
wall/system solution is underway the inverted matrix can be invoked to solve (10) at the 
appropriate point of the iteration cycle which continues to be represented by (3). In the present 
method, it has been found sufficient to use the mass-point deflections and velocities at the start 
of the time-step when evaluating the pressure terms in the column vector, Fij, of (10). This yields 
substantial savings in computational time without noticeably compromising the accuracy of the 
solution; for this reason, we describe the solution procedure as semi-implicit. 

APPLICATION OF PARALLEL COMPUTING 
The methods described above are ideally suited to parallel processing. The array of panel elements 
seen in Figure 1 is mapped onto the basic array of a distributed-array processor (DAP). The 
parallel computations were carried out on a SUN4/AMT DAP510. This is a SIMD 
mini-supercomputer system. Thus, a set of influence coefficients associated with a particular 
panel-element, ij, due to the influence of all the remaining panel-elements can be calculated in 
a single operation. Of greater importance is the repeated calculation, as the wall deflection 
evolves, of all of the source strengths, (5), and the evaluation of velocity-perturbation potential, 
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(6a), and tangential perturbation velocity, (6b), at a particular panel; these, too, reduce to single 
operations. In addition, the execution of the finite-difference solution for the wall/flow system, 
can be substantially expedited. In each of (3a) and (3b), concurrent calculation at every 
mass-point is carried out rather than sweeping through the array of panel-elements. These 
equations are naturally two-dimensional whereas (9) and (10) are essentially four-dimensional 
owing to the presence of expressions such as IΦijmn. For large mesh sizes this leads to enormous 
storage requirements both for all three sets of influence coefficients and the inverted matrix, 
G-1ijmn, required to solve (10). We have therefore sought to couch these parts of the procedure in 
a two-dimensional form appropriate to the DAP and reduce memory requirements. 

Reduced memory requirements for influence coefficients 
In our applications we choose to use uniform discretizations of the compliant panel that give 

arrays of identical panel elements. This approach is adopted because the wall motion is allowed 
to evolve freely; to use mesh-refinement techniques in particular regions would require knowledge 
of the wall behaviour in advance. The use of a single size of panel-element allows symmetries of 
the influence-coefficient matrices to be exploited. 

The array of panel-elements, size M × N, is mapped onto the basic array of the DAP, and 
taken to be located in A(„ 1, 1) as shown in the schematic (Figure 2). A discretization comprising 
identically-sized panel elements but having an array of dimensions (2M — 1) × (2N — 1) is then 
set up. This occupies four basic arrays of the DAP, again as shown in Figure 2. A key panel-element, 
located at A(M, N, 1,1) is chosen and the coefficients for this one panel-element obtaining from 
the influence of all of the (2M — 1) × (2N — 1) panel-elements evaluated and stored. This larger 
single, two-dimensional, array of influence coefficients then includes sets of influence coefficients 
appropriate to every panel-element existing on the actual compliant panel. The set of influence 
coefficients relevant to a particular panel-element, ij, can be obtained by shifting the larger array 
so that the key panel-element is coincident with the particular panel-element and selecting the 
array elements that now fall within the boundaries of the array of actual panel-elements; this 
process is illustrated in Figure 2b. Using this technique, each four-dimensional array of size 
M × N × M × N is reduced to a two-dimensional array of size (2M — 1) × (2N — 1). The 
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availability on the DAP of implicit functions such as array-shift and 'equivalence' (identifying 
the four basic arrays with the larger array seen in Figure 2a) makes the implementation of this 
technique on the DAP relatively simple. 

Alternative solution of the acceleration equation 
For large mesh sizes, it is desirable to avoid the storage (or repeated reading-in) of the matrix 

G-1ijmn required to solve (10) at every iteration of each time-step. What follows is an alternative 
method to cope with this stage of the iteration cycle. The inertial side of the system of equations, 
(9), is first simplified by partial decoupling. An 'internal' mesh is used to generate the 
hydrodynamic inertia term, δpU2(ẅ), in (8). Relative to the mesh seen in Figure 1, this new mesh 
is defined by the lines: i = 1/2, 3/2, . . . , (M - 1/2) with j = 1/2, 3/2, . . ., (N - 1/2). Evidently, 
the ensuing panel-elements are of identical size and relative position to the original set. There 
is, therefore, no need to calculate a new set of the appropriate influence coefficients, IΦijmn. This 
internal set of panel elements has its control points coincident with the mass points and thus 
(9) takes the simpler form: 

From a physical consideration of the hydrodynamic inertia, it is known that the dominant 
coefficients of the left-hand side, when written in matrix form, lie in the leading diagonal. 
Equation(s) (11) are then solved through re-writing: 

where (n) is the iteration number for this procedure. At each iteration (12) is used for a sweep 
through the panel-elements. As they become available in the course of this sweep, updated values 
of ẅ(n)m,n (i.e. with (n + 1) replacing (n) on the right-hand side) are used in the summation seen 
above. The above procedure may be recognized as a Gauss-Seidel method with pivoting. It is 
noted that, for each value of ij, the right-hand side of (12) can be calculated in a single parallel 
operation. Used in tandem with the memory-saving technique described above, the procedure 
only utilises arrays that match the basic array size of the DAP. Of course, the savings in storage 
that this method achieves are bought by increased computational time when compared to the 
direct method of solving (10) using matrix inversion. However, for large mesh sizes the use of 
the direct method would require external storage of the inverted matrix and the repeated 
conversion of data type between host and DAP entry program would result in massive increases 
to the program run time. Lastly, it is noted that the use of an internal mesh does not fully 
capture the hydrodynamic inertia of the dynamic system since the contribution of the set of 'half 
panel-elements' adjacent to the compliant-panel edges has been neglected. When this alternative 
method is appropriately used (for the larger mesh sizes), this error becomes negligible. 

RESULTS 
In order to investigate the behaviour of the interactive wall/flow model, an initial perturbation 
from the equilibrium position is required. This might take the form of a localised disturbance 
of the wall position, an isolated pressure pulse or a pressure pulse travelling in the flow. For 
the purposes of testing the model, we will initiate the wall motion by imposing a deflection and 
releasing the wall at time t = 0. A pressure-pulse excitation is included in the further results 
which follow the testing. 
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Model testing 
Before undertaking any 'numerical experiments', it is necessary to validate the response 

predictions of the present model. Comparison is made with the semi-analytical modal study of 
Lucey and Carpenter23 which was, in part, summarized above under the heading Mathematical 
Model. Thus, we have used the spatially dependent part of (2) to define an initial displacement. 
Through-out this sub-section the data used has that: h = 0.01 m, B = 4904 Nm, KE = 0, 
ρm = 2600 kg/m3 and ρ = 1000 kg/m3. Furthermore, wall damping is absent. 

Figure 3 shows the response of a panel with dimensions, a = b = 1.0 m, at different flow speeds 
after an initial deflection given by (2) using only the fundamental mode (k = l = 1) and with 
A11 = 0.002 m. The time-steps are of size 10 - 4 sec and approximately six iterations are required 
before convergence is achieved at each time-step. Figures 3a, 3b and 3c respectively show the 
deflection of the panel mid-point, w55, with the passage of time for the flow speeds U∞ = 10, 
40 and 50m/sec. Figures 3d (U∞ = 10m/sec), 3e (U∞ = 40m/sec) and 3f with 3g 
(U∞ = 50 m/sec) are 'snapshots' of the complete compliant panel at the indicated times, t, after 
the initial perturbation. At 10 m/sec sub-critical oscillatory behaviour is seen whilst at the higher, 
post-critical flow speeds, divergence instability is manifest. It is noted that divergence takes the 
form of a downstream-travelling wave rather than the truly static instability predicted by 
standing-wave methods 18-20,23. In Figure 4 the sub-critical angular frequencies of oscillation 
(ωr) and post-critical growth rates ( -ω i ) obtained using the present model are compared with 
those found using a single (fundamental) mode analysis. This Figure also gives an indication of 
the necessary resolution of wall disturbances in the numerical model in order to determine the 
divergence-onset flow speed accurately. It must be remarked that this comparison of methods 
is not entirely appropriate since the standing-wave model has been constrained to a single mode. 
Whilst the present method reproduces essentially single-mode behaviour at relatively low flow 
speeds (Figures 3a and 3d) and exactly at divergence onset, it can be seen from Figures 3e, 3f 
and 3g that other modes have entered the solution in a natural manner. It is thus immediately 
obvious that the present method provides a substantial improvement upon the standing-wave 
methods for which the modes present must be prescribed in advance. 

The behaviour of a panel with dimensions, a = 1.0 m and b = 0.5 m, close to the critical flow 
speed is seen in Figure 5. In these cases, an appropriate time-step has size 10 - 5 sec. For this 
aspect ratio, a modal analysis predicts that the most dangerous mode (that which has the lowest 
divergence-onset flow speed) has k = 2 and l = 1. This has been verified by the present method. 
Figures 5a, 5b and 5c, all at 90 m/sec show sub-critical behaviour with upstream wave travel 
whilst Figures 5d, 5e and 5f, all at 100 m/sec illustrate divergence instability as a 
downstream-travelling wave. In reality, damping would quickly attenuate the sub-critical 
upstream waves and slightly reduce the growth rate of the divergence waves. 

Further results 
The preceding sub-section has shown that, once a certain divergence-onset flow speed is 

exceeded, the instability does not occur as the simple amplification of a fixed displacement field 
which has been suggested by the standing-wave methods of prediction18-20,23. However, these 
semi-analytical methods and the present method do give the same onset flow speed. The present 
numerical simulation shows the travelling-wave nature of divergence instability. A clear 
demonstration of this is presented in Figures 6 and 7. The material properties of the compliant 
wall used for these results are akin to those used in the original Kramer walls discussed in 
Reference 1: B = 3.56 × 10 - 4 Nm, KE = 3.5 × 105 N/m3, ρm = 952 kg/m3 with dimensions 
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a = b = 0.10 m and h = 2 mm. The fluid density, ρ, is 1000 kg/m3. Wall damping is absent; this 
point is emphasized because a travelling-wave hydroelastic analysis of an infinitely long compliant 
wall suggests that wall damping is essential for the realization of divergence instability. 

Shown in Figure 6a is the initial deflection (at t = 0) imposed upon the compliant panel which 
has been discretized using a 30 x 30 mesh. The flow speed, U∞, is parallel to the x-direction. 
A vertical scale factor of 3000 has been applied in this and all the following 'snapshot' results 
presented. At a sub-critical flow speed, U∞ = 2 m/sec, a typical evolution of the disturbance is 
represented by Figures 6b and 6c plotted at t = 0.006 sec and t = 0.012 sec respectively. The 
deformation initially remains three-dimensional with flexural waves propagating outwards from 
the central disturbance. Note the distortion of these waves due to the hydrodynamic effects: the 
phase speed of the downstream-travelling wavefront is greater than its upstream-travelling 
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counterpart. At the later time, there is evidence of wave-reflection at the panel edges. Ultimately, 
the downstream-travelling waves come to dominate the wall response. 

The system behaviour at a post-critical flow speed, U∞ = 3 m/sec after the initial deflection 
(Figure 6d) is depicted in Figures 6e (t - 0.006 sec) and 6f(t - 0.012 sec). Divergence instability 
is found. In contrast to the sub-critical behaviour, the panel response is dominated by 
quasi-two-dimensional effects, the instability occurring as a slow downstream-travelling wave. 
It should also be noted that amplitude growth is found at locations upstream of the initial 
excitation—this feature strongly suggests that divergence is an absolute instability despite the 
manifest waves having a positive phase speed. The form of the divergence waves is further 
illustrated in Figure 7, which employs the results at U∞ = 3 m/sec and t = 0.012 sec. Figure 7a 
is a side view of the unstable wave whilst Figure 7b is a contour plot of the compliant-panel 
topography from which the instability wavelength can readily be deduced. Other results, not 
presented here, have investigated the dependence of divergence upon wall parameters. These 
essentially reproduce the findings of Garrad and Carpenter20 and Lucey and Carpenter23. For 
example, increasing the wall stiffness through either B or KE raises the onset flow speed of the 
instability and, at a given unstable flow speed, an increase to B(KE) leads to a decrease (increase) 
in the wavelength of the divergence wave. 

The present numerical method thus evinces good qualitative agreement with the experimental 
findings of Hansen and Hunsten12,13 and Gad-el-Hak, Blackwelder and Riley14; divergence is 
a slow downstream-travelling wave with a wavelength dependent upon the wall properties. 
However, it has been suggested14,25 that the presence of wall damping is essential for divergence 
to exist. This contention finds support in travelling-wave analyses of infinitely long compliant 
walls1,17,26,27 However, the results discussed above show divergence in the absence of damping. 
In two-dimensional simulations, Lucey and Carpenter16 have explained that, where divergence 
is concerned, the leading and trailing edges generate the destabilizing effect played by damping 
in travelling-wave analyses so allowing damping to revert to its more orthodox role of attenuation. 
Figures 8a and 8b demonstrate that this also holds true for the present extension into 
three-dimensions. These Figures show the way that the wall energy changes with time for flow 
speeds beneath (Figure 8a) and above (Figure 8b) divergence-onset and pertain to the sequences 
seen in Figures 6. The wall energy, Ew, comprises strain and kinetic energies and is evaluated 
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through the following: 

At the sub-critical flow speed, the wall energy is seen first to drop before the system arrives at 
a form of neutral stability. Damping dissipates the wall energy, eventually eliminating the 
disturbance. At the post-critical flow speed, instability is clearly recorded by the rapid increase 
in wall energy. Damping serves only marginally to counter the rate of energy transfer from the 
flow into the wall. Note the initial drop in wall energy; this occurs at times during which the 
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divergence wave is being formed. Damping does not alter the critical flow speed since exactly 
at onset wall and fluid stiffnesses are exactly in balance resulting in no motion. 

Finally, the wall response to a pressure pulse is investigated. The above form of initial 
excitation—imposing a 'bump' on the compliant panel—is somewhat artificial. Here a point 
pressure pulse is allowed to travel, at the flow speed, over the compliant panel having first 
appeared at the leading edge at t = 0 sec. The pressure pulse is modelled as a perturbation from 
the free stream flow speed at the pulse location, the boundary-element method being adjusted 
to accommodate the consequent spatially-dependent applied flow. Run at a post-critical flow 
speed, U∞ = 3 m/sec, Figure 9 shows a succession of both 'snapshots' and contour plots of the 
wall. The position of the pulse at the time of plotting is included for those cases in which the 
pulse is over the compliant panel. This set of Figures illustrates the development of the 
predominantly two-dimensional divergence wave from the three dimensional flexural waves 
which spread out from the initiating source of energy. 

CONCLUSIONS 
A method has been developed to simulate numerically the three-dimensional interaction of a 
finite compliant panel with an unsteady potential flow. A spring-backed flexible plate has been 
used for the compliant-wall model; however, the general method—coupling a boundary-element 
flow solution to a dynamic wall solution—can also be used to investigate the behaviour of other 
types of compliant wall, e.g. single- or multi-layer viscoelastic continua, provided that suitable 
wall solutions are available. Parallel computing has been shown to be applicable to each aspect 
(fluid and solid dynamics, solution of the coupled system) of the present method having couched 
the problem so as fully to exploit the architecture of the array processor. 

The method has been tested against the predictions of a modal stability analysis and shown 
to give corresponding instability-onset flow speeds. The numerical simulation improves on 
previous standing-wave predictions; divergence instability is now seen to take the form of slow 
downstream-travelling waves which are essentially two-dimensional in character. As time passes, 
these waves come to occupy all regions of the compliant panel, even those locations upstream 
of the point of initial excitation. This description agrees with experimental findings. At sub-critical 
speeds, the response is primarily three-dimensional with flexural waves transmitting energy 
outwards from the point of excitation. Wall damping has been shown to attenuate the sub-critical 
response but only slightly reduce the growth rate of divergence instability. The critical flow speed 
for divergence onset is indifferent to wall damping. 

Although we have developed a linear wall/flow model in this paper, the general 
boundary-element method, could be used to investigate divergence instability for non-linear 
disturbances. This would necessitate the inclusion of non-linear terms in the wall mechanics which 
principally arise from in-plane stretching of the plate. A further, and perhaps more interesting, 
development would be to incorporate a boundary layer into the present simulations. 

ACKNOWLEDGEMENTS 
This work is part of a research programme at the University of Warwick which is supported 
by the Ministry of Defence (Procurement Executive). 

REFERENCES 
1 Carpenter, P. W. and Garrad, A. D. The hydrodynamic stability of flows over Kramer-type compliant surfaces. 

Part 1. Tollmien-Schlichting instabilities, J. Fluid Mech., 155, 465-510 (1985) 



HYDROELASTIC STABILITY OF A COMPLIANT PANEL 553 

2 Yeo, K. S. The stability of boundary-layer flow over single- and multi-layer viscoelastic walls, J. Fluid Mech., 196, 
359-408 (1988) 

3 Yeo, K. S. The hydrodynamic stability of boundary-layer flow over a class of anisotropic compliant walls, J. Fluid 
Mech., 220, 125-160(1990) 

4 Carpenter, P. W. and Morris, P. J. The effects of anisotropic wall compliance on boundary-layer stability and 
transition, J. Fluid Mech., 218, 171-223 (1990) 

5 Daniel, A. P., Gaster, M. and Willis, G. J. K. Boundary-layer stability on compliant surfaces, Report British Maritime 
Technology Ltd (1987) 

6 Gaster, M. Is the dolphin a red herring? IUTAM Symp. Turbul. Manag. Relamin. Bangalore, (Eds. Liepmann, H. W. 
and Narasimha, R.), Springer-Verlag, New York, pp. 285-304 (1987) 

7 Willis, G. J. K. Hydrodynamic stability of boundary layers over compliant surfaces, PhD Thesis, University of 
Exeter (1986) 

8 Carpenter, P. W. The optimization of multi-panel compliant walls for delay of laminar-turbulent transition, AIAA 
Paper 91-1772 (1991) 

9 Carpenter, P. W., Lucey, A. D. and Dixon, A. E. The optimisation of compliant walls for drag reduction, Recent 
Developments in Turbulence Management, (Ed. K.-S. Choi), Kluwer Academic Publishers, Dordrecht, pp. 195-221 
(1991) 

10 Lucey, A. D., Carpenter, P. W. and Dixon, A. E. The role of wall instabilities in boundary-layer transition over 
compliant walls, in Proc. Bound. Layer Transit. Control Conf. Cambridge, [Royal Aero Soc., 35.1-35.10 (1991)] 

11 Carpenter, P. W. Status of transition delay using compliant walls, Viscous Drag Reduction in Boundary Layers, 
(Eds. Bushnell, D. M. and Hefner, J. M.), Vol. 23 of Progr. Astronaut. Aeronaut. AIAA, Washington, DC, pp. 79-113 
(1990) 

12 Hansen, R. J. and Hunsten, D. L. An experimental study of turbulent flows over compliant surfaces. J. Sound Vib., 
34,297-308(1974) 

13 Hansen, R. J. and Hunsten, D. L. Fluid-property effects on flow-generated waves on a compliant surface, J. Fluid 
Mech., 133, 161-177(1983) 

14 Gad-el-Hak, M., Blackwelder, R. F. and Riley, J. F. On the interaction of compliant coatings with boundary-layer 
flows, J. Fluid Mech., 140, 257-280 (1984) 

15 Carpenter, P. W. and Garrad, A. D. The hydrodynamic stability of flows over Kramer-type compliant surfaces. 
Part 2. Flow-induced surface instabilities, J. Fluid Mech., 170, 465-510 (1985) 

16 Lucey, A. D. and Carpenter, P. W. A numerical simulation of the interaction of compliant wall and inviscid flow, 
J. Fluid Mech., 234, 121-146 (1992) 

17 Dugundji, J., Dowell, E. H. and Perkin, B. Subsonic flutter of panels on a continuous elastic foundation, AIAA J., 
1,1146-1154(1963) 

18 Weaver, D. S. and Unny, T. S. The hydroelastic stability of a flat plate, J. Appl. Mech., 37, 823-827 (1971) 
19 Ellen, C. H. The stability of simply supported rectangular surfaces in uniform subsonic flow, J. Appl. Mech., 40, 

68-72 (1973) 
20 Garrad, A. D. and Carpenter, P. W. A theoretical investigation of flow-induced instabilities in compliant coatings, 

J. Sound Vib., 84, 483-500 (1982) 
21 Kramer, M. O. Boundary-layer stabilization by distributed damping, J. Am. Soc. Naval Eng., 72, 25-33; J. Aero/Space 

Sci., 27, 69(1960) 
22 Dowell, E. H. Aeroelasticity of plates and shells, Noordhoff, Dordrecht (1975) 
23 Lucey, A. D. and Carpenter, P. W. The hydroelastic stability of three-dimensional disturbances of a finite compliant 

panel, J. Sound Vib., (to appear) (1993) 
24 Hess, J. L. and Smith, A. M. O. Calculation of potential flow about arbitrary bodies, Vol. 8 of Progr. Aeronaut. 

Sci., Pergamon Press, New York, pp. 1-138 (1966) 
25 Gad-el-Hak, M. The response of elastic and viscoelastic surfaces to a turbulent boundary layer, J. Appl. Mech., 53, 

206-212 (1985) 
26 Landahl, M. T. On the stability of a laminar incompressible boundary layer over a flexible surface, J. Fluid Mech., 

13,602-632(1962) 
27 Benjamin, T. B. The threefold classification of unstable disturbances in flexible surfaces bounding inviscid flows, 

J. Fluid Mech., 16, 436-450 (1963) 


